Приемы решения показательных уравнений. Решение показательно-степенных уравнений, алгоритмы и примеры

Что такое показательное уравнение? Примеры.

Итак, показательное уравнение… Новый уникальный экспонат на нашей общей выставке самых разнообразных уравнений!) Как это почти всегда бывает, ключевым словом любого нового математического термина является соответствующее прилагательное, которое его характеризует. Так и тут. Ключевым словом в термине «показательное уравнение» является слово «показательное» . Что оно означает? Это слово означает, что неизвестное (икс) находится в показателях каких-либо степеней. И только там! Это крайне важно.

Например, такие простые уравнения:

3 x +1 = 81

5 x + 5 x +2 = 130

4·2 2 x -17·2 x +4 = 0

Или даже такие монстры:

2 sin x = 0,5

Прошу сразу обратить внимание на одну важную вещь: в основаниях степеней (снизу) – только числа . А вот в показателях степеней (сверху) – самые разнообразные выражения с иксом. Совершенно любые.) Всё от конкретного уравнения зависит. Если, вдруг, в уравнении вылезет икс где-нибудь ещё, помимо показателя (скажем, 3 x = 18+x 2), то такое уравнение будет уже уравнением смешанного типа . Такие уравнения не имеют чётких правил решения. Поэтому в данном уроке мы их рассматривать не будем. На радость ученикам.) Здесь мы будем рассматривать только показательные уравнения в «чистом» виде.

Вообще говоря, даже чистые показательные уравнения чётко решаются далеко не все и не всегда. Но среди всего богатого многообразия показательных уравнений есть определённые типы, которые решать можно и нужно. Вот именно эти типы уравнений мы с вами и рассмотрим. И примеры обязательно порешаем.) Так что устраиваемся поудобнее и – в путь! Как и в компьютерных «стрелялках», наше путешествие будет проходить по уровням.) От элементарного к простому, от простого – к среднему и от среднего - к сложному. По пути вас также будет ждать секретный уровень – приёмы и методы решения нестандартных примеров. Те, о которых вы не прочитаете в большинстве школьных учебников… Ну, а в конце вас, разумеется, ждёт финальный босс в виде домашки.)

Уровень 0. Что такое простейшее показательное уравнение? Решение простейших показательных уравнений.

Для начала рассмотрим какую-нибудь откровенную элементарщину. С чего-то же надо начинать, верно? Например, такое уравнение:

2 х = 2 2

Даже безо всяких теорий, по простой логике и здравому смыслу ясно, что х = 2. Иначе же никак, верно? Никакое другое значение икса не годится… А теперь обратим наш взор на запись решения этого крутого показательного уравнения:

2 х = 2 2

Х = 2

Что же у нас произошло? А произошло следующее. Мы, фактически, взяли и… просто выкинули одинаковые основания (двойки)! Совсем выкинули. И, что радует, попали в яблочко!

Да, действительно, если в показательном уравнении слева и справа стоят одинаковые числа в каких угодно степенях, то эти числа можно отбросить и просто приравнять показатели степеней. Математика разрешает.) И дальше можно работать уже отдельно с показателями и решать куда более простое уравнение. Здорово, правда?

Вот и ключевая идея решения любого (да-да, именно любого!) показательного уравнения: с помощью тождественных преобразований необходимо добиться того, чтобы слева и справа в уравнении стояли одинаковые числа-основания в различных степенях. А дальше можно смело убрать одинаковые основания и приравнять показатели степеней. И работать с более простым уравнением.

А теперь запоминаем железное правило: убирать одинаковые основания можно тогда и только тогда, когда в уравнении слева и справа числа-основания стоят в гордом одиночестве.

Что значит, в гордом одиночестве? Это значит, безо всяких соседей и коэффициентов. Поясняю.

Например, в уравнении

3·3 x-5 = 3 2 x +1

Тройки убирать нельзя! Почему? Потому что слева у нас стоит не просто одинокая тройка в степени, а произведение 3·3 x-5 . Лишняя тройка мешает: коэффициент, понимаешь.)

То же самое можно сказать и про уравнение

5 3 x = 5 2 x +5 x

Здесь тоже все основания одинаковые – пятёрка. Но справа у нас не одинокая степень пятёрки: там – сумма степеней!

Короче говоря, убирать одинаковые основания мы имеем право лишь тогда, когда наше показательное уравнение выглядит так и только так:

a f ( x ) = a g ( x )

Такой вид показательного уравнения называют простейшим . Или, по-научному, каноническим . И какое бы накрученное уравнение перед нами ни было, мы его, так или иначе, будем сводить именно к такому простейшему (каноническому) виду. Или, в некоторых случаях, к совокупности уравнений такого вида. Тогда наше простейшее уравнение можно в общем виде переписать вот так:

F(x) = g(x)

И всё. Это будет эквивалентным преобразованием. При этом в качестве f(x) и g(x) могут стоять совершенно любые выражения с иксом. Какие угодно.

Возможно, особо любознательный ученик поинтересуется: а с какой такой стати мы вот так легко и просто отбрасываем одинаковые основания слева и справа и приравниваем показатели степеней? Интуиция интуицией, но вдруг, в каком-то уравнении и для какого-то основания данный подход окажется неверным? Всегда ли законно выкидывать одинаковые основания? К сожалению, для строгого математического ответа на этот интересный вопрос нужно довольно глубоко и серьёзно погружаться в общую теорию устройства и поведения функций. А чуть конкретнее – в явление строгой монотонности. В частности, строгой монотонности показательной функции y = a x . Поскольку именно показательная функция и её свойства лежат в основе решения показательных уравнений, да.) Развёрнутый ответ на этот вопрос будет дан в отдельном спецуроке, посвящённом решению сложных нестандартных уравнений с использованием монотонности разных функций.)

Объяснять подробно этот момент сейчас – это лишь выносить мозг среднестатистическому школьнику и отпугивать его раньше времени сухой и грузной теорией. Я этого делать не буду.) Ибо наша основная на данный момент задача – научиться решать показательные уравнения! Самые-самые простые! Посему – пока не паримся и смело выкидываем одинаковые основания. Это можно , поверьте мне на слово!) А дальше уже решаем эквивалентное уравнение f(x) = g(x). Как правило, более простое, чем исходное показательное.

Предполагается, конечно же, что решать хотя бы , и уравнения, уже без иксов в показателях, народ на данный момент уже умеет.) Кто до сих пор не умеет – смело закрывайте эту страницу, гуляйте по соответствующим ссылочкам и восполняйте старые пробелы. Иначе несладко вам придётся, да…

Я уж молчу про иррациональные, тригонометрические и прочие зверские уравнения, которые также могут всплыть в процессе ликвидации оснований. Но не пугайтесь, откровенную жесть в показателях степеней мы с вами пока рассматривать не будем: рано ещё. Будем тренироваться лишь на самых простых уравнениях.)

Теперь рассмотрим уравнения, которые требуют некоторых дополнительных усилий для сведения их к простейшим. Для отличия назовём их простыми показательными уравнениями . Итак, двигаемся на следующий уровень!

Уровень 1. Простые показательные уравнения. Распознаём степени! Натуральные показатели.

Ключевыми правилами в решении любых показательных уравнений являются правила действий со степенями . Без этих знаний и умений ничего не получится. Увы. Так что, если со степенями проблемы, то для начала милости прошу . Кроме того, ещё нам понадобятся . Эти преобразования (целых два!) – основа решения всех уравнений математики вообще. И не только показательных. Так что, кто забыл, тоже прогуляйтесь по ссылочке: я их не просто так ставлю.

Но одних только действий со степенями и тождественных преобразований мало. Необходима ещё личная наблюдательность и смекалка. Нам ведь требуются одинаковые основания, не так ли? Вот и осматриваем пример и ищем их в явном или замаскированном виде!

Например, такое уравнение:

3 2 x – 27 x +2 = 0

Первый взгляд на основания . Они… разные! Тройка и двадцать семь. Но паниковать и впадать в отчаяние рано. Самое время вспомнить, что

27 = 3 3

Числа 3 и 27 – родственнички по степени! Причём близкие.) Стало быть, имеем полное право записать:

27 x +2 = (3 3) x+2

А вот теперь подключаем наши знания о действиях со степенями (а я предупреждал!). Есть там такая очень полезная формулка:

(a m) n = a mn

Если теперь запустить её в ход, то вообще отлично получается:

27 x +2 = (3 3) x+2 = 3 3(x +2)

Исходный пример теперь выглядит вот так:

3 2 x – 3 3(x +2) = 0

Отлично, основания степеней выровнялись. Чего мы и добивались. Полдела сделано.) А вот теперь запускаем в ход базовое тождественное преобразование – переносим 3 3(x +2) вправо. Элементарных действий математики никто не отменял, да.) Получаем:

3 2 x = 3 3(x +2)

Что нам даёт такой вид уравнения? А то, что теперь наше уравнение сведено к каноническому виду : слева и справа стоят одинаковые числа (тройки) в степенях. Причём обе тройки - в гордом одиночестве. Смело убираем тройки и получаем:

2х = 3(х+2)

Решаем это и получаем:

X = -6

Вот и все дела. Это правильный ответ.)

А теперь осмысливаем ход решения. Что нас спасло в этом примере? Нас спасло знание степеней тройки. Как именно? Мы опознали в числе 27 зашифрованную тройку! Этот приёмчик (шифровка одного и того же основания под разными числами) – один из самых популярных в показательных уравнениях! Если только не самый популярный. Да и в тоже, кстати. Именно поэтому в показательных уравнениях так важна наблюдательность и умение распознавать в числах степени других чисел!

Практический совет:

Степени популярных чисел надо знать. В лицо!

Конечно, возвести двойку в седьмую степень или тройку в пятую может каждый. Не в уме, так хотя бы на черновике. Но в показательных уравнениях гораздо чаще надо не возводить в степень, а наоборот - узнавать, какое число и в какой степени скрывается за числом, скажем, 128 или 243. А это уже посложнее, чем простое возведение, согласитесь. Почувствуйте разницу, что называется!

Поскольку умение распознавать степени в лицо пригодится не только на этом уровне, но и на следующих, вот вам небольшое задание:

Определить, какими степенями и каких чисел являются числа:

4; 8; 16; 27; 32; 36; 49; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729; 1024.

Ответы (вразброс, естественно):

27 2 ; 2 10 ; 3 6 ; 7 2 ; 2 6 ; 9 2 ; 3 4 ; 4 3 ; 10 2 ; 2 5 ; 3 5 ; 7 3 ; 16 2 ; 2 7 ; 5 3 ; 2 8 ; 6 2 ; 3 3 ; 2 9 ; 2 4 ; 2 2 ; 4 5 ; 25 2 ; 4 4 ; 6 3 ; 8 2 ; 9 3 .

Да-да! Не удивляйтесь, что ответов побольше, чем заданий. Например, 2 8 , 4 4 и 16 2 – это всё 256.

Уровень 2. Простые показательные уравнения. Распознаём степени! Отрицательные и дробные показатели.

На этом уровне мы уже используем наши знания о степенях на полную катушку. А именно – вовлекаем в сей увлекательный процесс отрицательные и дробные показатели! Да-да! Нам же надо наращивать мощь, верно?

Например, такое страшное уравнение:

Опять первый взгляд – на основания. Основания – разные! Причём на этот раз даже отдалённо не похожие друг на друга! 5 и 0,04… А для ликвидации оснований нужны одинаковые… Что же делать?

Ничего страшного! На самом деле всё то же самое, просто связь между пятёркой и 0,04 визуально просматривается плохо. Как выкрутимся? А перейдём-ка в числе 0,04 к обычной дроби! А там, глядишь, всё и образуется.)

0,04 = 4/100 = 1/25

Ух ты! Оказывается, 0,04 – это 1/25! Ну кто бы мог подумать!)

Ну как? Теперь связь между числами 5 и 1/25 легче углядеть? Вот то-то и оно…

А теперь уже по правилам действий со степенями с отрицательным показателем можно твёрдой рукой записать:

Вот и отлично. Вот мы и добрались до одинакового основания – пятёрки. Заменяем теперь в уравнении неудобное нам число 0,04 на 5 -2 и получаем:

Опять же, по правилам действий со степенями, теперь можно записать:

(5 -2) x -1 = 5 -2(x -1)

На всякий случай, напоминаю (вдруг, кто не в курсе), что базовые правила действий со степенями справедливы для любых показателей! В том числе и для отрицательных.) Так что смело берём и перемножаем показатели (-2) и (х-1) по соответствующему правилу. Наше уравнение становится всё лучше и лучше:

Всё! Кроме одиноких пятёрок в степенях слева и справа больше ничего нет. Уравнение сведено к каноническому виду. А дальше – по накатанной колее. Убираем пятёрки и приравниваем показатели:

x 2 –6 x +5=-2(x -1)

Пример практически решён. Осталась элементарная математика средних классов – раскрываем (правильно!) скобки и собираем всё слева:

x 2 –6 x +5 = -2 x +2

x 2 –4 x +3 = 0

Решаем это и получаем два корня:

x 1 = 1; x 2 = 3

Вот и всё.)

А теперь снова поразмышляем. В данном примере нам вновь пришлось распознать одно и то же число в разной степени! А именно - увидеть в числе 0,04 зашифрованную пятёрку. Причём на этот раз – в отрицательной степени! Как же нам это удалось? С ходу – никак. А вот после перехода от десятичной дроби 0,04 к обыкновенной дроби 1/25 всё и высветилось! И дальше всё решение пошло как по маслу.)

Поэтому очередной зелёный практический совет.

Если в показательном уравнении присутствуют десятичные дроби, то переходим от десятичных дробей к обыкновенным. В обыкновенных дробях гораздо проще распознать степени многих популярных чисел! После распознавания переходим от дробей к степеням с отрицательными показателями.

Имейте в виду, что такой финт в показательных уравнениях встречается очень и очень часто! А человек не в теме. Смотрит он, например, на числа 32 и 0,125 и огорчается. Неведомо ему, что это одна и та же двойка, только в разных степенях… Но вы-то ведь уже в теме!)

Решить уравнение:

Во! На вид – тихий ужас… Однако внешность обманчива. Это простейшее показательное уравнение, несмотря на его устрашающий внешний вид. И сейчас я вам это покажу.)

Во-первых, разбираемся со всеми чиселками, сидящими в основаниях и в коэффициентах. Они, ясное дело, разные, да. Но мы всё же рискнём и попробуем сделать их одинаковыми ! Попробуем добраться до одного и того же числа в разных степенях . Причём, желательно, числа самого возможно малого. Итак, начинаем расшифровку!

Ну, с четвёркой сразу всё ясно – это 2 2 . Так, уже кое-что.)

С дробью 0,25 – пока непонятно. Проверять надо. Используем практический совет – переходим от десятичной дроби к обыкновенной:

0,25 = 25/100 = 1/4

Уже гораздо лучше. Ибо теперь уже отчётливо видно, что 1/4 – это 2 -2 . Отлично, и число 0,25 тоже сроднили с двойкой.)

Пока всё идёт хорошо. Но осталось самое нехорошее число из всех – корень квадратный из двух! А с этим перцем что делать? Можно ли его тоже представить как степень двойки? А кто ж его знает…

Что ж, снова лезем в нашу сокровищницу знаний о степенях! На этот раз дополнительно подключаем наши знания о корнях . Из курса 9-го класса мы с вами должны были вынести, что любой корень, при желании, всегда можно превратить в степень с дробным показателем.

Вот так:

В нашем случае:

Во как! Оказывается, корень квадратный из двух – это 2 1/2 . Вот оно что!

Вот и прекрасно! Все наши неудобные числа на самом деле оказались зашифрованной двойкой.) Не спорю, где-то весьма изощрённо зашифрованной. Но и мы ведь тоже повышаем свой профессионализм в разгадке подобных шифров! А дальше уже всё очевидно. Заменяем в нашем уравнении числа 4, 0,25 и корень из двух на степени двойки:

Всё! Основания всех степеней в примере стали одинаковыми – двойка. А теперь в ход идут стандартные действия со степенями:

a m · a n = a m + n

a m:a n = a m-n

(a m) n = a mn

Для левой части получится:

2 -2 ·(2 2) 5 x -16 = 2 -2+2(5 x -16)

Для правой части будет:

И теперь наше злое уравнение стало выглядеть вот так:

Кто не врубился, как именно получилось это уравнение, то тут вопрос не к показательным уравнениям. Вопрос – к действиям со степенями. Я же просил срочно повторить тем, у кого проблемы!

Вот и финишная прямая! Получен канонический вид показательного уравнения! Ну как? Убедил я вас, что не всё так страшно? ;) Убираем двойки и приравниваем показатели:

Осталось всего лишь решить это линейное уравнение. Как? С помощью тождественных преобразований, вестимо.) Дорешайте, чего уж там! Умножайте обе части на двойку (чтобы убрать дробь 3/2), переносите слагаемые с иксами влево, без иксов вправо, приводите подобные, считайте – и будет вам счастье!

Должно всё получиться красиво:

X = 4

А теперь снова осмысливаем ход решения. В данном примере нас выручил переход от квадратного корня к степени с показателем 1/2 . Причём только такое хитрое преобразование нам помогло везде выйти на одинаковое основание (двойку), которое и спасло положение! И, если бы не оно, то мы бы имели все шансы навсегда зависнуть и так и не справиться с этим примером, да…

Поэтому не пренебрегаем очередным практическим советом:

Если в показательном уравнении присутствуют корни, то переходим от корней к степеням с дробными показателями. Очень часто только такое преобразование и проясняет дальнейшую ситуацию.

Конечно же, отрицательные да дробные степени уже гораздо сложнее натуральных степеней. Хотя бы с точки зрения визуального восприятия и, особенно, распознавания справа налево!

Понятно, что напрямую возвести, например, двойку в степень -3 или же четвёрку в степень -3/2 не такая уж и большая проблема. Для знающих.)

А вот поди, например, с ходу сообрази, что

0,125 = 2 -3

Или

Тут только практика и богатый опыт рулят, да. И, конечно же, чёткое представление, что такое отрицательная и дробная степень. А также – практические советы! Да-да, те самые зелёные .) Надеюсь, что они всё-таки помогут вам лучше ориентироваться во всём разношёрстном многообразии степеней и значительно увеличат ваши шансы на успех! Так что не пренебрегаем ими. Я не зря зелёным цветом пишу иногда.)

Зато, если вы станете на «ты» даже с такими экзотическими степенями, как отрицательные и дробные, то ваши возможности в решении показательных уравнений колоссально расширятся, и вам уже будет по плечу практически любой тип показательных уравнений. Ну, если не любой, то процентов 80 всех показательных уравнений – уж точно! Да-да, я не шучу!

Итак, наша первая часть знакомства с показательными уравнениями подошла к своему логическому завершению. И, в качестве промежуточной тренировки, я традиционно предлагаю немного порешать самостоятельно.)

Задание 1.

Чтобы мои слова о расшифровке отрицательных и дробных степеней не пропали даром, предлагаю сыграть в небольшую игру!

Представьте в виде степени двойки числа:

Ответы (в беспорядке):

Получилось? Отлично! Тогда делаем боевое задание – решаем простейшие и простые показательные уравнения!

Задание 2.

Решить уравнения (все ответы – в беспорядке!):

5 2x-8 = 25

2 5x-4 – 16 x+3 = 0

Ответы:

x = 16

x 1 = -1; x 2 = 2

x = 5

Получилось? Действительно, уж куда проще-то!

Тогда решаем следующую партию:

(2 x +4) x -3 = 0,5 x ·4 x -4

35 1-x = 0,2 - x ·7 x

Ответы:

x 1 = -2; x 2 = 2

x = 0,5

x 1 = 3; x 2 = 5

И эти примеры одной левой? Отлично! Вы растёте! Тогда вот вам на закуску ещё примерчики:

Ответы:

x = 6

x = 13/31

x = -0,75

x 1 = 1; x 2 = 8/3

И это решено? Что ж, респект! Снимаю шляпу.) Значит, урок прошёл не напрасно, и начальный уровень решения показательных уравнений можно считать успешно освоенным. Впереди – следующие уровни и более сложные уравнения! И новые приёмы и подходы. И нестандартные примеры. И новые сюрпризы.) Всё это – в следующем уроке!

Что-то не получилось? Значит, скорее всего, проблемы в . Или в . Или в том и другом сразу. Тут уж я бессилен. Могу в очередной раз предложить лишь одно – не лениться и прогуляться по ссылочкам.)

Продолжение следует.)

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или . База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

Решение показательных уравнений. Примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое показательное уравнение ? Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся в показателях каких-то степеней. И только там! Это важно.

Вот вам примеры показательных уравнений :

3 х ·2 х = 8 х+3

Обратите внимание! В основаниях степеней (внизу) - только числа . В показателях степеней (вверху) - самые разнообразные выражения с иксом. Если, вдруг, в уравнении вылезет икс где-нибудь, кроме показателя, например:

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Здесь мы будем разбираться с решением показательных уравнений в чистом виде.

Вообще-то, даже чистые показательные уравнения чётко решаются далеко не всегда. Но существуют определённые типы показательных уравнений, которые решать можно и нужно. Вот эти типы мы и рассмотрим.

Решение простейших показательных уравнений.

Для начала решим что-нибудь совсем элементарное. Например:

Даже безо всяких теорий, по простому подбору ясно, что х=2. Больше-то никак, верно!? Никакое другое значение икса не катит. А теперь глянем на запись решения этого хитрого показательного уравнения:

Что мы сделали? Мы, фактически, просто выкинули одинаковые основания (тройки). Совсем выкинули. И, что радует, попали в точку!

Действительно, если в показательном уравнении слева и справа стоят одинаковые числа в каких угодно степенях, эти числа можно убрать и приравнять показатели степеней. Математика позволяет. Остаётся дорешать куда более простое уравнение. Здорово, правда?)

Однако, запомним железно: убирать основания можно только тогда, когда слева и справа числа-основания находятся в гордом одиночестве! Безо всяких соседей и коэффициентов. Скажем, в уравнениях:

2 х +2 х+1 = 2 3 , или

двойки убирать нельзя!

Ну вот, самое главное мы и освоили. Как переходить от злых показательных выражений к более простым уравнениям.

"Вот те раз!" - скажете вы. "Кто ж даст такой примитив на контрольных и экзаменах!?"

Вынужден согласиться. Никто не даст. Но теперь вы знаете, куда надо стремиться при решении замороченных примеров. Надо приводить его к виду, когда слева - справа стоит одно и то же число-основание. Дальше всё будет легче. Собственно, это и есть классика математики. Берём исходный пример и преобразовываем его к нужному нам виду. По правилам математики, разумеется.

Рассмотрим примеры, которые требуют некоторых дополнительных усилий для приведения их к простейшим. Назовём их простыми показательными уравнениями.

Решение простых показательных уравнений. Примеры.

При решении показательных уравнений, главные правила - действия со степенями. Без знаний этих действий ничего не получится.

К действиям со степенями надо добавить личную наблюдательность и смекалку. Нам требуются одинаковые числа-основания? Вот и ищем их в примере в явном или зашифрованном виде.

Посмотрим, как это делается на практике?

Пусть нам дан пример:

2 2х - 8 х+1 = 0

Первый зоркий взгляд - на основания. Они... Они разные! Два и восемь. Но впадать в уныние - рано. Самое время вспомнить, что

Двойка и восьмёрка - родственнички по степени.) Вполне можно записать:

8 х+1 = (2 3) х+1

Если вспомнить формулку из действий со степенями:

(а n) m = a nm ,

то вообще отлично получается:

8 х+1 = (2 3) х+1 = 2 3(х+1)

Исходный пример стал выглядеть вот так:

2 2х - 2 3(х+1) = 0

Переносим 2 3 (х+1) вправо (элементарных действий математики никто не отменял!), получаем:

2 2х = 2 3(х+1)

Вот, практически, и всё. Убираем основания:

Решаем этого монстра и получаем

Это правильный ответ.

В этом примере нас выручило знание степеней двойки. Мы опознали в восьмёрке зашифрованную двойку. Этот приём (шифровка общих оснований под разными числами) - очень популярный приём в показательных уравнениях! Да и в логарифмах тоже. Надо уметь узнавать в числах степени других чисел. Это крайне важно для решения показательных уравнений.

Дело в том, что возвести любое число в любую степень - не проблема. Перемножить, хоть на бумажке, да и всё. Например, возвести 3 в пятую степень сможет каждый. 243 получится, если таблицу умножения знаете.) Но в показательных уравнениях гораздо чаще надо не возводить в степень, а наоборот... Узнавать, какое число в какой степени скрывается за числом 243, или, скажем, 343... Здесь вам никакой калькулятор не поможет.

Степени некоторых чисел надо знать в лицо, да... Потренируемся?

Определить, какими степенями и каких чисел являются числа:

2; 8; 16; 27; 32; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729, 1024.

Ответы (в беспорядке, естественно!):

5 4 ; 2 10 ; 7 3 ; 3 5 ; 2 7 ; 10 2 ; 2 6 ; 3 3 ; 2 3 ; 2 1 ; 3 6 ; 2 9 ; 2 8 ; 6 3 ; 5 3 ; 3 4 ; 2 5 ; 4 4 ; 4 2 ; 2 3 ; 9 3 ; 4 5 ; 8 2 ; 4 3 ; 8 3 .

Если приглядеться, можно увидеть странный факт. Ответов существенно больше, чем заданий! Что ж, так бывает... Например, 2 6 , 4 3 , 8 2 - это всё 64.

Предположим, что вы приняли к сведению информацию о знакомстве с числами.) Напомню ещё, что для решения показательных уравнений применим весь запас математических знаний. В том числе и из младших-средних классов. Вы же не сразу в старшие классы пошли, верно?)

Например, при решении показательных уравнений очень часто помогает вынесение общего множителя за скобки (привет 7 классу!). Смотрим примерчик:

3 2х+4 -11·9 х = 210

И вновь, первый взгляд - на основания! Основания у степеней разные... Тройка и девятка. А нам хочется, чтобы были - одинаковые. Что ж, в этом случае желание вполне исполнимое!) Потому, что:

9 х = (3 2) х = 3 2х

По тем же правилам действий со степенями:

3 2х+4 = 3 2х ·3 4

Вот и отлично, можно записать:

3 2х ·3 4 - 11·3 2х = 210

Мы привели пример к одинаковым основаниям. И что дальше!? Тройки-то нельзя выкидывать... Тупик?

Вовсе нет. Запоминаем самое универсальное и мощное правило решения всех математических заданий:

Не знаешь, что нужно - делай, что можно!

Глядишь, всё и образуется).

Что в этом показательном уравнении можно сделать? Да в левой части прямо просится вынесение за скобки! Общий множитель 3 2х явно намекает на это. Попробуем, а дальше видно будет:

3 2х (3 4 - 11) = 210

3 4 - 11 = 81 - 11 = 70

Пример становится всё лучше и лучше!

Вспоминаем, что для ликвидации оснований нам необходима чистая степень, безо всяких коэффициентов. Нам число 70 мешает. Вот и делим обе части уравнения на 70, получаем:

Оп-па! Всё и наладилось!

Это окончательный ответ.

Случается, однако, что выруливание на одинаковые основания получается, а вот их ликвидация - никак. Такое бывает в показательных уравнениях другого типа. Освоим этот тип.

Замена переменной в решении показательных уравнений. Примеры.

Решим уравнение:

4 х - 3·2 х +2 = 0

Сначала - как обычно. Переходим к одному основанию. К двойке.

4 х = (2 2) х = 2 2х

Получаем уравнение:

2 2х - 3·2 х +2 = 0

А вот тут и зависнем. Предыдущие приёмы не сработают, как ни крутись. Придётся доставать из арсенала ещё один могучий и универсальный способ. Называется он замена переменной.

Суть способа проста до удивления. Вместо одного сложного значка (в нашем случае - 2 х) пишем другой, попроще (например - t). Такая, казалось бы, бессмысленная замена приводит к потрясным результатам!) Просто всё становится ясным и понятным!

Итак, пусть

Тогда 2 2х = 2 х2 = (2 х) 2 = t 2

Заменяем в нашем уравнении все степени с иксами на t:

Ну что, осеняет?) Квадратные уравнения не забыли ещё? Решаем через дискриминант, получаем:

Тут, главное, не останавливаться, как бывает... Это ещё не ответ, нам икс нужен, а не t. Возвращаемся к иксам, т.е. делаем обратную замену. Сначала для t 1:

Стало быть,

Один корень нашли. Ищем второй, из t 2:

Гм... Слева 2 х, справа 1... Неувязочка? Да вовсе нет! Достаточно вспомнить (из действий со степенями, да...), что единичка - это любое число в нулевой степени. Любое. Какое надо, такое и поставим. Нам нужна двойка. Значит:

Вот теперь всё. Получили 2 корня:

Это ответ.

При решении показательных уравнений в конце иногда получается какое-то неудобное выражение. Типа:

Из семёрки двойка через простую степень не получается. Не родственники они... Как тут быть? Кто-то, может и растеряется... А вот человек, который прочитал на этом сайте тему "Что такое логарифм?" , только скупо улыбнётся и запишет твёрдой рукой совершенно верный ответ:

Такого ответа в заданиях "В" на ЕГЭ быть не может. Там конкретное число требуется. А вот в заданиях "С" - запросто.

В этом уроке приведены примеры решения самых распространённых показательных уравнений. Выделим основное.

Практические советы:

1. Первым делом смотрим на основания степеней. Соображаем, нельзя ли их сделать одинаковыми. Пробуем это сделать, активно используя действия со степенями. Не забываем, что числа без иксов тоже можно превращать в степени!

2. Пробуем привести показательное уравнение к виду, когда слева и справа стоят одинаковые числа в каких угодно степенях. Используем действия со степенями и разложение на множители. То что можно посчитать в числах - считаем.

3. Если второй совет не сработал, пробуем применить замену переменной. В итоге может получиться уравнение, которое легко решается. Чаще всего - квадратное. Или дробное, которое тоже сводится к квадратному.

4. Для успешного решения показательных уравнений надо степени некоторых чисел знать "в лицо".

Как обычно, в конце урока вам предлагается немного порешать.) Самостоятельно. От простого - к сложному.

Решить показательные уравнения:

Посложнее:

2 х+3 - 2 х+2 - 2 х = 48

9 х - 8·3 х = 9

2 х - 2 0,5х+1 - 8 = 0

Найти произведение корней:

2 3-х + 2 х = 9

Получилось?

Ну, тогда сложнейший пример (решается, правда, в уме...):

7 0.13х + 13 0,7х+1 + 2 0,5х+1 = -3

Что, уже интереснее? Тогда вот вам злой пример. Вполне тянет на повышенную трудность. Намекну, что в этом примере спасает смекалка и самое универсальное правило решения всех математических заданий.)

2 5х-1 · 3 3х-1 · 5 2х-1 = 720 х

Пример попроще, для отдыха):

9·2 х - 4·3 х = 0

И на десерт. Найти сумму корней уравнения:

х·3 х - 9х + 7·3 х - 63 = 0

Да-да! Это уравнение смешанного типа! Которые мы в этом уроке не рассматривали. А что их рассматривать, их решать надо!) Этого урока вполне достаточно для решения уравнения. Ну и, смекалка нужна... И да поможет вам седьмой класс (это подсказка!).

Ответы (в беспорядке, через точку с запятой):

1; 2; 3; 4; решений нет; 2; -2; -5; 4; 0.

Всё удачно? Отлично.

Есть проблемы? Не вопрос! В Особом разделе 555 все эти показательные уравнения решаются с подробными объяснениями. Что, зачем, и почему. Ну и, конечно, там имеется дополнительная ценная информация по работе со всякими показательными уравнениями. Не только с этими.)

Последний забавный вопрос на соображение. В этом уроке мы работали с показательными уравнениями. Почему я здесь ни слова не сказал про ОДЗ? В уравнениях - это очень важная штука, между прочим...

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Степенные или показательные уравнения называют уравнения, в которых переменные находятся в степенях, а основанием является число. Например:

Решение показательного уравнения сводится к 2 довольно простым действиям:

1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания неодинаковые, ищем варианты для решения данного примера.

2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Допустим, дано показательное уравнение следующего вида:

Начинать решение данного уравнения стоит с анализа основания. Основаниея разные - 2 и 4, а для решения нам нужно, чтобы были одинаковые, поэтому преобразуем 4 по такой формуле -\[ (a^n)^m = a^{nm}:\]

Прибавляем к исходному уравнению:

Вынесем за скобки \

Выразим \

Поскольку степени одинаковые, отбрасываем их:

Ответ: \

Где можно решить показательное уравнение онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

1º. Показательными уравнениями называют уравнения, содержащие переменную в показателе степени.

Решение показательных уравнений основано на свойстве степени: две степени с одним и тем же основание равны тогда и только тогда, когда равны их показатели.

2º. Основные способы решения показательных уравнений :

1) простейшее уравнение имеет решение ;

2) уравнение вида логарифмированием по основанию a сводят к виду ;

3) уравнение вида равносильно уравнению ;

4) уравнение вида равносильно уравнению .

5) уравнение вида через замену сводят к уравнению , а затем решают совокупность простейших показательных уравнений ;

6) уравнение со взаимно обратными величинами заменой сводят к уравнению , а затем решают совокупность уравнений ;

7) уравнения, однородные относительно a g (x) и b g (x) при условии вида через замену сводят к уравнению , а затем решают совокупность уравнений .

Классификация показательных уравнений.

1. Уравнения, решаемые переходом к одному основанию .

Пример 18. Решить уравнение .

Решение: Воспользуемся тем, что все основания степеней являются степенями числа 5: .

2. Уравнения, решаемые переходом к одному показателю степени .

Эти уравнения решаются преобразованием исходного уравнения к виду , которое использованием свойства пропорции приводится к простейшему.

Пример 19. Решить уравнение:

3. Уравнения, решаемые вынесением общего множителя за скобки .

Если в уравнении каждый показатель степени отличается от другого на некоторое число, то уравнения решаются вынесением за скобки степени с наименьшим показателем.

Пример 20. Решить уравнение .

Решение: Вынесем в левой части уравнения степень с наименьшим показателем за скобки:



Пример 21. Решить уравнение

Решение: Сгруппируем отдельно в левой части уравнения слагаемые, содержащие степени с основанием 4, в правой части – с основанием 3, затем вынесем степени с наименьшим показателем за скобки:

4. Уравнения, сводящиеся к квадратным (или кубическим) уравнениям .

К квадратному уравнению относительно новой переменной y сводятся уравнения:

а) вида подстановкой , при этом ;

б) вида подстановкой , при этом .

Пример 22. Решить уравнение .

Решение: Сделаем замену переменной и решим квадратное уравнение:

.

Ответ: 0; 1.

5. Однородные относительно показательных функций уравнения.

Уравнение вида является однородным уравнением второй степени относительно неизвестных a x и b x . Такие уравнения сводятся предварительным делением обеих частей на и последующей подстановкой к квадратным уравнениям.

Пример 23. Решить уравнение .

Решение: Разделим обе части уравнения на :

Положив , получим квадратное уравнение с корнями .

Теперь задача сводится к решению совокупности уравнений . Из первого уравнения находим, что . Второе уравнение не имеет корней, так как при любых значения x .

Ответ: -1/2.

6. Рациональные относительно показательных функций уравнения .

Пример 24. Решить уравнение .

Решение: Разделим числитель и знаменатель дроби на 3 x и получим вместо двух – одну показательную функцию:

7. Уравнения вида .

Такие уравнения с множеством допустимых значений (ОДЗ), определяемым условием , логарифмированием обеих частей уравнения приводятся к равносильному уравнению , которые в свою очередь равносильны совокупности двух уравнений или .

Пример 25. Решить уравнение: .

.

Дидактический материал.

Решите уравнения:

1. ; 2. ; 3. ;

4. ; 5. ; 6. ;

9. ; 10. ; 11. ;

14. ; 15. ;

16. ; 17. ;

18. ; 19. ;

20. ; 21. ;

22. ; 23. ;

24. ; 25. .

26. Найдите произведение корней уравнения .

27. Найдите сумму корней уравнения .

Найдите значение выражения:

28. , где x 0 – корень уравнения ;

29. , где x 0 – целый корень уравнения .

Решите уравнение:

31. ; 32. .

Ответы: 1. 0; 2. -2/9; 3. 1/36; 4. 0, 0.5; 5. 0; 6. 0; 7. -2; 8. 2; 9. 1, 3; 10. 8; 11. 5; 12. 1; 13. ¼; 14. 2; 15. -2, -1; 16. -2, 1; 17. 0; 18. 1; 19. 0; 20. -1, 0; 21. -2, 2; 22. -2, 2; 23. 4; 24. -1, 2; 25. -2, -1, 3; 26. -0.3; 27. 3; 28. 11; 29. 54; 30. -1, 0, 2, 3; 31. ; 32. .

Тема №8.

Показательные неравенства.

1º. Неравенство, содержащее переменную в показателе степени, называется показательным неравенством.

2º. Решение показательных неравенств вида основано на следующих утверждениях:

если , то неравенство равносильно ;

если , то неравенство равносильно .

При решении показательных неравенств используют те же приемы, что и при решении показательных уравнений.

Пример 26. Решить неравенство (методом перехода к одному основанию ).

Решение: Так как , то заданное неравенство можно записать в виде: . Так как , то данное неравенство равносильно неравенству .

Решив последнее неравенство, получим .

Пример 27. Решить неравенство: (методом вынесения общего множителя за скобки ).

Решение: Вынесем за скобки в левой части неравенства , в правой части неравенства и разделим обе части неравенства на (-2), поменяв знак неравенства на противоположный:

Так как , то при переходе к неравенству показателей знак неравенства опять меняется на противоположный. Получаем . Таким образом, множество всех решений данного неравенства есть интервал .

Пример 28. Решить неравенство (методом введения новой переменной ).

Решение: Пусть . Тогда данное неравенство примет вид: или , решением которого является интервал .

Отсюда . Поскольку функция возрастает, то .

Дидактический материал.

Укажите множество решений неравенства:

1. ; 2. ; 3. ;

6. При каких значениях x точки графика функции лежат ниже прямой ?

7. При каких значениях x точки графика функции лежат не ниже прямой ?

Решите неравенство:

8. ; 9. ; 10. ;

13. Укажите наибольшее целое решение неравенства .

14. Найдите произведение наибольшего целого и наименьшего целого решений неравенства .

Решите неравенство:

15. ; 16. ; 17. ;

18. ; 19. ; 20. ;

21. ; 22. ; 23. ;

24. ; 25. ; 26. .

Найдите область определения функции:

27. ; 28. .

29. Найдите множество значений аргумента, при которых значения каждой из функций больше 3:

и .

Ответы: 11. 3; 12. 3; 13. -3; 14. 1; 15. (0; 0,5); 16. ; 17. (-1; 0)U(3; 4); 18. [-2; 2]; 19. (0; +∞); 20. (0; 1); 21. (3; +∞); 22. (-∞; 0)U(0,5; +∞); 23. (0; 1); 24. (-1; 1); 25. (0; 2]; 26. (3; 3,5)U (4; +∞); 27. (-∞; 3)U{5}; 28. }